
 Artificial Intelligence and Internet Studies Vol. 1, No. 1; 2025

1

Development and Control of Android's Self-Triggering Startup

Process

Oliver Benjamin Carter1

1. Oliver Benjamin Carter, Department of Computer Science, School of Computing and Digital

Technologies, Manchester Metropolitan University, United Kingdom

Correspondence: Department of Computer Science, School of Computing and Digital Technologies,

Manchester Metropolitan University, United Kingdom, John Dalton Building, Chester Street,

Manchester M1 5GD, United Kingdom

Abstract

Android, as the dominant operating system for mobile devices, has revolutionized how users interact

with applications through its open and flexible ecosystem. Among its many features, self-triggering

(auto-start) programs play a pivotal role in enhancing user convenience—from automatically launching

alarm apps at boot to keeping background services like email sync running seamlessly. However, this

functionality is a double-edged sword: while it streamlines daily operations, it also introduces significant

security risks, such as unauthorized background data collection, excessive resource consumption, and

even malware persistence.

This paper conducts a comprehensive analysis of Android's system architecture and startup mechanisms,

laying the groundwork for understanding how auto-start programs are activated. By combining

theoretical insights with practical programming demonstrations, we simulate the implementation of a

self-triggering program using Android's broadcast intent system, with a focus on the

BOOT_COMPLETED signal. From the perspective of application developers, we propose three detailed

control strategies—static analysis techniques, programmatic management via system APIs, and

command-line utilities—to regulate auto-start behavior. For end-users, we outline actionable security

measures, including rigorous source verification, granular permission management, and proactive

behavior monitoring.

Through this research, we highlight the critical need for balanced control mechanisms that preserve user

convenience while mitigating potential risks. By bridging developer and user perspectives, this study

contributes to a deeper understanding of Android system security and provides a framework for future

advancements in auto-start program governance.

Keywords: Android, self-triggering startup, auto-start programs, system architecture, broadcast

mechanism, security control, mobile application security

1. Introduction

The term "Android"—derived from the Greek word for "robot"—has transcended its linguistic roots to

become synonymous with the world’s most widely used mobile operating system. Announced by Google

on November 5, 2007, Android emerged as an open-source alternative to proprietary mobile OSes, built

atop the Linux kernel to support a diverse range of devices, from smartphones and tablets to smartwatches

and televisions (Google, 2013). Its architecture, which integrates an operating system, middleware, user

interface, and application software, has fostered unprecedented innovation in the mobile industry.

Android’s success can be attributed to its open-source nature and free distribution model, which have

encouraged collaboration across carriers, device manufacturers, and developers. This openness has

created a dynamic ecosystem where applications are highly replaceable and extensible: developers can

leverage system-level components, while users can customize their devices with third-party apps. Key

technical features, such as the WebView component for embedding web content (HTML and JavaScript)

and the Eclipse + ADT + Android SDK development environment, have further lowered barriers to entry,

attracting a vast community of programmers (Payet & Spoto, 2012).

However, this openness comes with inherent security trade-offs. While existing research has explored

Android’s architectural security (Enck et al., 2014), mobile virus prevention (Felt et al., 2011), and

application-specific vulnerabilities (Grace et al., 2012), the unique risks posed by self-triggering

programs remain underexamined. Auto-start programs rely on Android’s broadcast mechanism to launch

automatically in response to system events—such as boot completion, network connectivity changes, or

battery status updates. While legitimate uses abound (e.g., fitness apps tracking activity from startup),

focuscholar.com/journal/index.php/aiis Vol. 1, No. 1; 2025

2

malicious actors can exploit this functionality to bypass user oversight: for example, malware might auto-

start to steal data in the background or consume battery life for cryptomining.

This paper addresses this gap by investigating the design, implementation, and control of self-triggering

programs in Android. We begin by dissecting Android’s system architecture and startup process to clarify

how auto-start mechanisms integrate with the OS. Next, we simulate an auto-start program using

practical code examples, demonstrating how developers can leverage broadcast intents to enable self-

triggering. Finally, we propose multi-layered control strategies for developers and users alike, aiming to

balance functionality with security. By doing so, this study provides a foundation for enhancing Android

system security and guiding future research on auto-start program governance.

2. Android System Architecture and Startup Process

Android’s system architecture is designed as a layered stack, enabling modularity, scalability, and ease

of development. This structure, reminiscent of other modern operating systems, comprises four primary

layers, each with distinct responsibilities that collectively support application execution and user

interaction (Google, 2013).

2.1 Application Layer

The application layer is the topmost tier, where end-users directly interact with software. All applications

at this layer run on the Dalvik Virtual Machine (DVM), a register-based virtual machine specifically

optimized for Android’s resource-constrained environment (e.g., mobile devices with limited memory

and processing power). Unlike the stack-based Java Virtual Machine (JVM), the DVM executes .dex

(Dalvik Executable) files—an optimized format that compresses multiple Java class files into a single

file, reducing memory usage and improving loading speed (Nicola, 2009).

This layer includes both pre-installed system apps (e.g., Contacts, Calendar, and the home screen

launcher) and third-party applications downloaded from app stores. A key feature of the application layer

is its reliance on Android’s component model, which divides apps into reusable modules: Activities (user

interfaces), Services (background processes), Broadcast Receivers (event responders), and Content

Providers (data sharers). This modularity enables seamless interaction between apps—for example, a

photo editing app can request images from the system’s Gallery app via a Content Provider.

2.2 Application Framework Layer

Beneath the application layer lies the Application Framework, a set of reusable components and APIs

developed primarily in Java. This layer acts as a bridge between applications and the underlying system,

providing developers with standardized tools to access core functionalities without needing to interact

directly with low-level code.

Key components of the Application Framework include:

Views: UI elements such as buttons, text boxes, and lists, which enable developers to build user interfaces.

Notification Manager: Controls how apps display alerts (e.g., pop-ups, status bar icons) to users.

Activity Manager: Manages the lifecycle of Activities, including their creation, pausing, resuming, and

termination.

Package Manager: Handles app installation, uninstallation, and permission verification.

Resource Manager: Manages non-code resources like images, strings, and layout files, supporting multi-

language and multi-device compatibility.

By abstracting complex system operations into simple APIs, the Application Framework empowers

developers to create feature-rich apps with minimal effort. For example, using the Location Manager

API, a developer can add GPS functionality to an app without writing low-level hardware communication

code.

2.3 System Libraries Layer

The System Libraries layer consists of a collection of C/C++ libraries that support the Application

Framework and enable core system capabilities. These libraries are not directly accessible to app

developers but are invoked by the framework’s Java APIs. Key libraries include:

libc: A modified version of the standard C library optimized for embedded systems, providing low-level

functions for memory allocation, string manipulation, and file handling.

Media Libraries: Support playback and recording of various audio and video formats (e.g., MP3, H.264),

focuscholar.com/journal/index.php/aiis Vol. 1, No. 1; 2025

3

enabling multimedia apps like music players and video editors.

SQLite: A lightweight relational database engine used by apps to store structured data locally (e.g., a

note-taking app saving user entries).

OpenGL ES: A 3D graphics API that powers visually intensive apps, such as games and AR applications.

Surface Manager: Coordinates the display of multiple apps on the screen, ensuring smooth transitions

and preventing overlapping UI elements.

WebKit: A web rendering engine that enables apps to display web content via the WebView component

(e.g., a news app embedding articles from a website).

Dalvik Virtual Machine Core Libraries: Support the DVM’s operation, including class loading and

bytecode execution.

These libraries collectively form the "engine" of Android, enabling high-performance execution of both

system and third-party applications.

2.4 Linux Kernel Layer

At the foundation of Android’s architecture lies the Linux kernel, a robust, open-source operating system

kernel that manages hardware resources and provides core system services. While Android is not a Linux

distribution in the traditional sense, it leverages the kernel’s stability and security features to handle

critical operations.

Key responsibilities of the Linux kernel in Android include:

Hardware Abstraction: Through device drivers, the kernel enables communication between software and

hardware components (e.g., cameras, touchscreens, and sensors).

Memory Management: Allocates and deallocates memory to processes, preventing leaks and ensuring

efficient resource usage.

Process Scheduling: Determines which processes receive CPU time, prioritizing critical system tasks

(e.g., phone calls) over non-essential background apps.

Security Enforcement: Enforces user and process permissions via Linux’s user ID (UID) and group ID

(GID) mechanisms, which underpin Android’s sandboxing model (each app runs as a separate user with

restricted access).

Network Stack Implementation: Manages Wi-Fi, cellular, and Bluetooth connectivity, enabling apps to

send and receive data over networks.

In essence, the Linux kernel acts as a "traffic controller," ensuring that hardware, software, and user

interactions operate in harmony.

2.5 Android Startup Process

Android’s startup process is a sequential sequence of events that transforms a powered-off device into a

fully functional system. This process unfolds in four distinct phases, each building on the previous one

to initialize hardware, load system services, and prepare for user interaction (Nicola, 2009) ().

Phase 1: Init Process Launch

The startup begins when the device is powered on, triggering the boot ROM to load the bootloader—a

small program that initializes hardware (e.g., RAM and CPU) and launches the Linux kernel. Once the

kernel is running, it starts the init process—the first user-space process (with process ID 1).

The init process parses the init.rc script, a configuration file that defines system services, file system

mounts, and process management rules. It creates essential directories (e.g., /data for app data), sets

permissions, and starts core daemons such as servicemanager (which manages binder inter-process

communication) and vold (the volume daemon for storage management). By the end of this phase, the

basic system framework is established ().

Phase 2: Zygote Initialization

After init completes its setup, it spawns the Zygote process—Android’s app incubator. Zygote’s primary

role is to preload core Java classes (e.g., java.lang.String) and resources (e.g., system themes) into

memory. This preloading reduces app launch time, as new apps can fork from Zygote rather than loading

these resources from scratch.

Concurrently, Zygote initializes the Dalvik Virtual Machine (DVM) and sets up a socket to listen for

focuscholar.com/journal/index.php/aiis Vol. 1, No. 1; 2025

4

requests from the system to create new app processes. This phase also sees the initialization of critical

system services, such as the media server (for audio/video processing) and surface flinger.

Phase 3: System Server Activation

Once the DVM is ready, Zygote launches the System Server process—the "heart" of Android’s system

services. System Server is a massive process that initializes and manages over 100 upper-layer services,

including:

Activity Manager Service (AMS): Controls app lifecycle, task management, and broadcast intent delivery.

Package Manager Service (PMS): Manages app installation, permissions, and metadata.

Window Manager Service (WMS): Coordinates app windows, handles multi-tasking, and manages the

home screen.

Telephony Service: Enables call handling, SMS, and cellular network interactions.

Content Provider Service: Facilitates data sharing between apps.

These services run in separate threads within System Server, ensuring modularity and fault tolerance. By

the end of this phase, the system is functionally ready to support applications.

Phase 4: Application Startup

With all system services active, the Activity Manager Service (AMS) initiates the final phase by

broadcasting the BOOT_COMPLETED intent—a system-wide signal indicating that the device has

finished booting. This intent triggers apps configured to auto-start, allowing them to launch immediately.

Simultaneously, AMS requests Zygote to create a new process for the home screen application (typically

the Launcher app), which serves as the user’s primary interface. Once the Launcher loads, the device is

fully operational, and users can interact with apps, make calls, or access other features.

This multi-phase startup process ensures that Android devices initialize efficiently, balancing speed with

the need to load critical services and user-facing applications.

3. Simulation of Self-Turn-On Programs

Self-triggering (auto-start) programs leverage Android’s broadcast mechanism to launch automatically

in response to system events. Among the most common triggers is the BOOT_COMPLETED intent,

which signals that the device has finished booting. By registering to receive this intent, an app can ensure

it starts running as soon as the system is ready—ideal for use cases like alarm clocks, fitness trackers, or

background sync tools.

This section demonstrates the implementation of an auto-start program through three key steps: creating

a Broadcast Receiver to intercept the BOOT_COMPLETED intent, defining a main Activity to execute

after launch, and configuring the app’s manifest to declare permissions and components.

3.1 Broadcast Receiver Implementation

A Broadcast Receiver is a component that "listens" for specific intents and responds to them. For auto-

start functionality, we create a subclass of BroadcastReceiver that overrides the onReceive() method to

launch the app’s main Activity when BOOT_COMPLETED is received.

This receiver first checks if the incoming intent is BOOT_COMPLETED (a safeguard against responding

to unintended signals). If so, it creates an Intent to launch MainActivity (the app’s primary interface) and

starts it with the FLAG_ACTIVITY_NEW_TASK flag—necessary because Broadcast Receivers run in

the system’s context, not a dedicated task.

3.2 Main Activity Implementation

The main Activity is the user-facing component that loads after the app auto-starts. For demonstration

purposes, this Activity displays a simple message confirming successful auto-start.

focuscholar.com/journal/index.php/aiis Vol. 1, No. 1; 2025

5

In this code, onCreate()—the method called when the Activity is first created—sets the layout (defined

in res/layout/main.xml) and updates a TextView to indicate the app has launched automatically. This

provides clear feedback to the user that the auto-start functionality is working.

3.3 Manifest Configuration

The AndroidManifest.xml file is critical for declaring the app’s components, permissions, and intent

filters. To enable auto-start, we must:

Declare the StartupReceiver and its intent filter for BOOT_COMPLETED.

Request the RECEIVE_BOOT_COMPLETED permission, which allows the app to receive the boot

completion intent.

The intent-filter for StartupReceiver ensures the system delivers BOOT_COMPLETED intents to it,

while the RECEIVE_BOOT_COMPLETED permission is mandatory (without it, the receiver will not

receive the intent). The category android:name="android.intent.category.HOME" ensures compatibility

with home screen-related processes.

3.4 Testing the Auto-Start Functionality

To verify the implementation, follow these steps:

focuscholar.com/journal/index.php/aiis Vol. 1, No. 1; 2025

6

Install the app on an Android device or emulator.

Restart the device/emulator.

After booting completes, the app should launch automatically, displaying the confirmation message in

MainActivity.

This simulation demonstrates how easily auto-start functionality can be implemented using Android’s

built-in mechanisms. However, as discussed later, this simplicity also makes it vulnerable to abuse—

underscoring the need for robust control strategies.

4. Control Methods for Android Self-Turn-On Programs

While auto-start programs offer convenience, their unregulated use can lead to security risks and

performance issues (e.g., excessive battery drain, data leaks, or malware persistence). To address this,

we propose control methods tailored to both developers (who build and modify apps) and end-users (who

interact with them daily).

4.1 Developer-Centric Control Approaches

Developers play a critical role in regulating auto-start behavior, as they can implement technical

safeguards during app development or modify existing apps to restrict unintended self-triggering. Three

key strategies are outlined below.

4.1.1 Static Analysis Techniques

Static analysis involves examining an app’s code and resources without executing it, enabling developers

to identify and remove auto-start components. This is particularly useful for auditing third-party apps or

sanitizing malicious software.

Tools and Workflow:

APK Decompilation with Apktool:

Apktool is a command-line tool that decompiles Android Package (APK) files into readable resources

(e.g., AndroidManifest.xml) and smali code—a human-readable representation of Dalvik bytecode. Steps

include:

Decompile the APK: apktool d target_app.apk

Inspect AndroidManifest.xml for BOOT_COMPLETED receiver declarations (e.g., <action

android:name="android.intent.action.BOOT_COMPLETED" />).

Analyze smali files (in the smali/ directory) to trace how the receiver handles the intent (e.g., checking

if it launches hidden services).

Identify suspicious permissions (e.g., RECEIVE_BOOT_COMPLETED for apps with no legitimate

need for auto-start).

Dex-to-Jar Conversion:

Tools like Dex2jar and JD-GUI convert .dex files (compiled Dalvik code) into .jar files (Java archives),

which can then be decompiled into readable Java code. This workflow reveals:

The logic in BroadcastReceiver subclasses (e.g., whether they launch malicious activities).

Hidden auto-start triggers (e.g., responding to CONNECTIVITY_CHANGE in addition to

BOOT_COMPLETED).

Manual Modification:

To disable auto-start in a decompiled app:

Remove the BOOT_COMPLETED intent filter from AndroidManifest.xml.

Delete or comment out the receiver’s smali/Java code that handles BOOT_COMPLETED.

Rebuild the APK with apktool b modified_app/.

Sign the modified APK (required for installation) using jarsigner or Android Studio.

Reinstall the sanitized app on the device .

4.1.2 Programmatic Control

Developers can dynamically enable or disable auto-start functionality at runtime using Android’s

PackageManager and ActivityManager APIs. This allows for granular control—for example, disabling

auto-start when the user toggles a setting in the app.

focuscholar.com/journal/index.php/aiis Vol. 1, No. 1; 2025

7

This code disables StartupReceiver (so it no longer responds to BOOT_COMPLETED) and revokes the

associated permission, ensuring the app cannot re-enable auto-start without user approval.

4.2 User-Centric Security Measures

End-users are the first line of defense against abusive auto-start programs. By adopting proactive

practices, users can minimize risks while retaining the benefits of legitimate auto-start functionality.

a) Source Verification

Malicious apps often rely on auto-start to persist, making it critical to download apps only from trusted

sources:

Use Official Stores: Prefer Google Play or reputable vendor stores (e.g., Samsung Galaxy Store), which

enforce security checks.

Verify Developers: Check the app’s developer name and reviews—avoid apps from unknown or unrated

developers.

Avoid Third-Party APKs: Sideloading APKs (installing from websites or file-sharing platforms) bypasses

store security, increasing exposure to malware.

b) Permission Management

Scrutinizing app permissions during installation can prevent unauthorized auto-start:

Question Unnecessary Permissions: A simple game requesting RECEIVE_BOOT_COMPLETED is

suspicious—deny such requests.

Leverage Permission Managers: Apps like Permission Manager X provide granular control, letting users

block specific permissions globally.

c) Security Tools

Installing dedicated security software adds an extra layer of protection:

Antivirus Suites: Tools like Lookout and Avast scan for malware with auto-start capabilities and block

suspicious behavior.

Google Play Protect: Enable this built-in feature (Settings > Security > Google Play Protect) to

automatically scan apps for threats.

Regular Updates: Keep security software signatures current to detect new auto-start malware variants .

d) Behavior Monitoring

Unusual device behavior can signal abusive auto-start programs:

Battery Drain: Apps that auto-start and run in the background often consume excessive battery—check

battery usage (Settings > Battery) to identify culprits.

Data Usage Spikes: Unexpected data transfers may indicate auto-starting apps sending information to

malicious servers.

Running Services: Use Developer Options (enable via Settings > About Phone > Tap "Build Number" 7

times) to view active services and terminate suspicious ones .

focuscholar.com/journal/index.php/aiis Vol. 1, No. 1; 2025

8

e) System Maintenance

Regular upkeep reduces vulnerabilities:

Update the OS: Android security patches often address auto-start exploits—enable automatic updates

(Settings > System > Advanced > System Update).

Uninstall Unused Apps: Reducing the number of apps minimizes the risk of auto-start abuse.

Backup Data: Regular backups (e.g., via Google Drive) ensure data can be recovered if malware

compromises the device .

5. Conclusion

Self-triggering startup programs are a defining feature of Android’s flexibility, enabling applications to

enhance user convenience through automated, context-aware behavior. From ensuring alarm apps

activate at boot to keeping communication tools synced in the background, these programs streamline

daily interactions with mobile devices. However, as this paper has demonstrated, their utility is

accompanied by significant risks: malicious actors can exploit auto-start mechanisms to deploy persistent

malware, consume resources, or violate user privacy.

References

Enck, W., Ongtang, M., & McDaniel, P. (2014). Understanding Android security. IEEE Security &

Privacy, 7(1), 50-57. https://doi.org/10.1109/MSP.2009.26

Felt, A. P., Chin, E., Hanna, S., Song, D., & Wagner, D. (2011). Android permissions demystified.

Proceedings of the 18th ACM Conference on Computer and Communications Security, 627-638.

https://doi.org/10.1145/2046707.2046779

Grace, M., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X. (2012). RiskRanker: Scalable and accurate zero-

day Android malware detection. Proceedings of the 10th International Conference on Mobile

Systems, Applications, and Services, 281-294. https://doi.org/10.1145/2307636.2307663

Google. (2013). Android security overview. https://source.android.com/security/overview

Nicola, C. U. (2009). Einblick in die Dalvik Virtual Machine. IMVS Fokus Report, 3(2), 5-12.

Payet, E., & Spoto, F. (2012). Static analysis of Android programs. Information and Software Technology,

54(11), 1192-1201. https://doi.org/10.1016/j.infsof.2012.06.005

Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., & Glezer, C. (2010). Google Android: A

comprehensive security assessment. IEEE Security & Privacy, 8(2), 35-44.

https://doi.org/10.1109/MSP.2010.2

Arora, S., & Sood, S. K. (2017). A survey on Android security: Threats, vulnerabilities, and solutions.

Cybersecurity, 1(1), 1-22. https://doi.org/10.1186/s42400-017-0004-1

Copyrights

The journal retains exclusive first publication rights to this original, unpublished manuscript, which

remains the authors' intellectual property. As an open-access journal, it permits non-commercial sharing

with attribution under the Creative Commons Attribution 4.0 International License (CC BY 4.0),

complying with COPE (Committee on Publication Ethics) guidelines. All content is archived in public

repositories to ensure transparency and accessibility.

