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Abstract 

The shortest path problem stands as a critical issue in transportation network analysis, serving as the 

foundation for numerous optimization tasks such as resource allocation, route design, and traffic 

management. This paper conducts an in-depth analysis of the basic Artificial Fish Swarm Algorithm 

(AFSA) and identifies its limitations in terms of accuracy and processing time when solving the shortest 

path problem between two points in a traffic network. To address these drawbacks, an improved AFSA 

is proposed, which optimizes the initialization of artificial fish populations and modifies their behaviors. 

Simulation experiments demonstrate that the improved algorithm can find the shortest path between any 

two points in a traffic network more accurately and efficiently compared to the original AFSA, verifying 

its feasibility and superiority in practical applications. 
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1. Introduction 

In the context of rapid urbanization and the continuous expansion of transportation networks, the efficient 

solution to the shortest path problem has become increasingly crucial for the operation of Intelligent 

Transportation Systems (ITS). The shortest path problem, which involves finding the path with the 

minimum total weight (such as distance, time, or cost) between two specific nodes in a network, is not 

only a fundamental research topic in graph theory but also a key technology in various real-world 

applications. For instance, in navigation systems, it directly affects the accuracy and efficiency of route 

guidance; in logistics and distribution, it determines the rationality of delivery routes and the reduction 

of operational costs; and in urban traffic management, it plays a vital role in alleviating traffic congestion 

and optimizing traffic flow. 

Over the past few decades, researchers have made extensive efforts to develop algorithms for solving the 

shortest path problem, resulting in a wide range of solutions. Traditional algorithms, such as Dijkstra's 

algorithm and the A* algorithm, have laid the theoretical foundation for this field. Dijkstra's algorithm, 

proposed by Edsger W. Dijkstra in 1956, is a classic method for finding the shortest path from a single 

source node to all other nodes in a graph with non-negative edge weights. It works by iteratively selecting 

the node with the smallest tentative distance and updating the distances to its neighbors. However, 

Dijkstra's algorithm has limitations in handling large-scale networks due to its high time complexity 

(O(n²) for adjacency matrices and O(m + n 𝑙𝑜𝑔 n) for adjacency lists, where n is the number of nodes 

and m is the number of edges), which makes it inefficient in real-time applications with dynamic traffic 

conditions. 

The A* algorithm, an extension of Dijkstra's algorithm, introduces a heuristic function to guide the search 

towards the target node, reducing the number of nodes that need to be explored. While the A* algorithm 

improves efficiency in many cases, its performance heavily depends on the quality of the heuristic 

function. A poorly designed heuristic function can lead to suboptimal performance or even failure to find 

the shortest path. 

In recent years, with the development of swarm intelligence and evolutionary computation, a new class 

of heuristic intelligent algorithms has emerged, providing alternative approaches to solving complex 

optimization problems. These algorithms, inspired by natural phenomena such as the foraging behavior 

of ants, the flocking of birds, and the evolution of species, exhibit strong global search capabilities and 

adaptability. Examples include genetic algorithms, simulated annealing algorithms, tabu search 

algorithms, and ant colony algorithms. Genetic algorithms, based on the principles of natural selection 

and genetics, use operations such as mutation, crossover, and selection to evolve solutions. However, 
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they often suffer from slow convergence and a tendency to fall into local optima. Simulated annealing 

algorithms, inspired by the annealing process in metallurgy, gradually reduce the temperature to escape 

local optima, but their performance is sensitive to cooling schedules. Tabu search algorithms use a 

memory mechanism to avoid revisiting previously explored solutions, but they may struggle with large 

solution spaces. Ant colony algorithms, which simulate the foraging behavior of ants laying and 

following pheromones, have shown promising results in path optimization problems, but they can be 

slow in convergence and require careful parameter tuning. 

The Artificial Fish Swarm Algorithm (AFSA), a relatively new swarm intelligence optimization 

algorithm, has attracted attention due to its simplicity, flexibility, and fast convergence speed. Proposed 

by Li Xiaolei et al., AFSA simulates the collective behavior of fish schools, including foraging, swarming, 

and following behaviors, to achieve global optimization through local interactions among individuals. 

However, like other intelligent algorithms, the basic AFSA has limitations in solving the shortest path 

problem, such as low accuracy and long processing time. To overcome these shortcomings, this paper 

proposes an improved AFSA by optimizing the initialization of artificial fish populations and modifying 

their behaviors. The simulation results demonstrate that the improved algorithm can find the shortest 

path more accurately and efficiently in traffic networks. 

2. Description of the Shortest Path Problem in Transportation Networks 

Transportation networks, such as urban road networks, consist of physical components such as road 

segments and intersections, as well as logical attributes such as travel time, distance, and road conditions. 

To mathematically model these networks for shortest path analysis, we can abstract them into weighted 

directed graphs. In graph theory, a weighted directed graph G is represented as a binary tuple G = (V, E), 

where: 

V is a set of nodes representing intersections or key points in the transportation network. For example, 

in a simple weighted network (as typically illustrated in graph theory for shortest path analysis), V could 

be defined as {1, 2, ..., 9}, where each number corresponds to a distinct intersection. 

E is a set of directed edges (arcs) representing road segments between nodes. Each edge <i, j> ∈ E 

indicates a direct road from node i to node j. 

Each edge <i, j> is associated with a non-negative weigh 𝑤𝑖𝑗, which represents the cost of traveling from 

node i to node j. The weight can be defined based on various attributes, such as travel time (in minutes), 

distance (in kilometers), or a composite index considering road conditions, traffic volume, and other 

factors. For instance, in a typical small-scale weighted network (often used for algorithm illustration in 

graph theory), the weight of edge <1, 2> could be set as 𝑤12 = 1 indicating that the cost from node 1 to 

node 2 is 1 unit (the specific unit depends on the attribute being measured, such as 1 minute for travel 

time or 1 kilometer for distance). 

The shortest path problem in a transportation network can be defined as follows: Given a weighted 

directed graph G=(V,E), a starting node S∈V, and a target node T∈V, find a path from S to T such that 

the sum of the weights of the edges along the path is minimized. For example, in a typical small-scale 

weighted directed graph (often used for algorithm illustration), suppose there exists a path from node 1 

to node 9 consisting of edges  

{<1,2>,<2,3>,<3,8>,<8,9>}, where the weights of these edges are 1, 1, 1, and 1 respectively. Then the 

total weight of this path is 4, and if no other path from node 1 to node 9 has a smaller total weight, this 

path is considered the shortest path. 

It is important to note that the shortest path problem can be extended to various scenarios, such as 

undirected graphs (where edges have no direction, i.e., 𝑤𝑖𝑗  = 𝑤𝑗𝑖 , time-dependent graphs (where 

weights change over time, e.g., due to traffic congestion), and multi-objective optimization (where 

multiple criteria, such as time and distance, need to be considered simultaneously). In this paper, we 

focus on static weighted undirected graphs, where the weights are constant and edges are bidirectional, 

which is a common abstraction of urban road networks in many practical applications. 

To better illustrate the problem, consider a more complex example as shown in Figure 1, which depicts 

an undirected weighted network with 30 nodes. Each edge is labeled with a weight representing the travel 

time in minutes. The goal is to find the shortest path from node 1 to node 30, i.e., the path with the 

minimum total travel time. This example mimics a real-world urban traffic network, where nodes 

represent intersections and edges represent road segments with varying travel times due to factors such 

as road length, speed limits, and traffic flow. 
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3. Implementation of the Improved Artificial Fish Swarm Algorithm for the Shortest Path Problem 

3.1 The Basic Artificial Fish Swarm Algorithm 

3.1.1 Algorithm Principles 

The Artificial Fish Swarm Algorithm (AFSA) is a population-based intelligent optimization algorithm 

that simulates the social behavior of fish schools. Unlike traditional optimization algorithms that rely on 

gradient information, AFSA achieves global optimization through the interaction and cooperation of 

multiple artificial fish individuals, each of which performs local search based on simple behavioral rules. 

The core idea of AFSA is to construct the low-level behaviors of individual fish (such as foraging, 

swarming, and following) and leverage the collective intelligence of the fish school to find the global 

optimal solution. 

AFSA has several advantages, including: 

a) Simplicity and ease of implementation: The algorithm uses simple behavioral rules and does not 

require complex mathematical derivations. 

b) Strong robustness: It is less sensitive to initial conditions and parameter settings, making it suitable 

for various optimization problems. 

c) Fast convergence: The collective search behavior allows the algorithm to quickly approach the 

optimal solution. 

d) Versatility: It can be applied to both continuous and discrete optimization problems with appropriate 

modifications. 

Due to these advantages, AFSA has been successfully applied in various fields, such as continuous 

optimization, combinatorial optimization, online identification of time-varying systems, parameter 

tuning of robust PID controllers, optimization of feedforward neural networks, reactive power 

optimization in power systems, multi-user detectors, information retrieval, and positioning of multi-stage 

stations in oil fields. 

3.1.2 Model Definitions 

To apply AFSA to the shortest path problem, we need to define the state of artificial fish, distance metrics, 

neighborhood concepts, and other key elements: 

a) State of artificial fish: The state of an artificial fish individual 𝑥𝑖 is represented as a vector 𝑋𝑖= (𝑋𝑖1, 

𝑋𝑖2, ...,𝑋𝑖𝑛), where each 𝑥𝑖𝑘 is a node in the transportation network. The vector represents a path 

from the starting node to the target node, with each element indicating a node along the path. 

b) Food concentration: The food concentration at the state 𝑥𝑖, denoted as y = f(𝑋𝑖), is defined as the 

reciprocal of the total weight of the path represented by 𝑥𝑖 . For the shortest path problem (a 

minimization problem), a higher food concentration indicates a shorter path. Thus, the goal is to 

find the artificial fish with the highest food concentration. 

c) Distance between artificial fish: The distance 𝑑𝑖𝑗  between two artificial fish 𝑥𝑖 and 𝑥𝑗 is defined 

to measure the similarity between their paths. In this paper, we use a modified Hamming 

distance:𝑑𝑖𝑗 = |𝑋𝑖 − 𝑋𝑗|  + |𝑋𝑗 − 𝑋𝑖|  This distance metric considers the symmetric difference 
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between the two paths, i.e., the number of nodes that are   in one path but not the other. A smaller 

distance indicates more similar paths. 

d) Visual range: The visual range (Visual) is the maximum distance within which an artificial fish can 

perceive other individuals. Artificial fish only interact with others within their visual range. 

e) Step size: The step size (step) determines the maximum distance an artificial fish can move in one 

iteration. It is usually a random value within a predefined range (rand() × step). 

f) Crowding factor (δ): The crowding factor controls the balance between exploration and exploitation. 

It is used to determine whether the fish school is too crowded to move towards the center. 

g) Center position of the fish school: The center position 𝑋𝑐 of a group of artificial fish is defined as 

the intersection of all paths, representing the common nodes in most paths: 

i.  

ii. Movement rule: When an artificial fish 𝑥𝑖 moves towards another fish 𝑥𝑗  by a random step, 

its new state 𝑋𝑗  (k) is calculated as: 

iii.  

This formula ensures that the movement is in the direction of 𝑋𝑗 with a random step length. 

3.1.3 Behavioral Descriptions 

The behavior of artificial fish in AFSA is governed by three primary rules: foraging, swarming, and 

following. These behaviors are designed to simulate the natural behavior of fish schools and guide the 

search process. 

a) Foraging behavior: Foraging behavior simulates the process of fish searching for food. For an 

artificial fish 𝑋𝑖: 

i. Randomly select another artificial fish 𝑋𝑗 within its visual range. 

ii. Compare the food concentrations: if f(𝑋𝑗) > f(𝑋𝑖:) (indicating a better path), move towards 

𝑋𝑗 by a random step. 

iii. If no better 𝑋𝑗 is found after several attempts (TryNumber), move randomly within the 

visual range. 

b) Swarming behavior: Swarming behavior mimics the tendency of fish to gather in groups to avoid 

predators. For an artificial fish 𝑋𝑖: 

i. Count the number of neighboring fish (𝑛𝑓) within its visual range and calculate their center 

position 𝑋𝑐. 

ii. If the average food concentration at the center (𝑌𝑐 / 𝑛𝑓) is higher than δ × 𝑌𝑖 (indicating 

sufficient food and low crowding), move towards 𝑋𝑐 by a random step. 

iii. Otherwise, perform foraging behavior. 

c) Following behavior: Following behavior simulates fish following the leader with the highest food 

concentration. For an artificial fish 𝑋𝑖: 

i. Identify the neighboring fish X<sub>j</sub> with the highest food concentration within 

its visual range. 

ii. If the food concentration of 𝑋𝑗 (𝑌𝑗) is higher than δ × 𝑌𝑖 (indicating a better path and low 

crowding), move towards 𝑋𝑗 by a random step. 

iii. Otherwise, perform foraging behavior. 

Behavior selection: Artificial fish select their next behavior based on the current environment. For 

minimization problems, the selection is often based on a trial-and-error approach: simulate each possible 

behavior (foraging, swarming, following) and choose the one that yields the best result. If no better 

behavior is found, foraging is performed by default. 

3.2 The Improved Artificial Fish Swarm Algorithm  
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The basic AFSA has limitations in solving the shortest path problem, such as uncertain initial population 

distribution and slow convergence. To address these issues, we propose the following improvements: 

3.2.1 Initialization Optimization 

The initial distribution of artificial fish significantly affects the global convergence of the algorithm. In 

the basic AFSA, artificial fish are randomly initialized, which may result in uneven coverage of the 

solution space. If the initial population does not cover the global optimal solution and the behavioral 

operators fail to expand the search space sufficiently, the algorithm may prematurely converge to a local 

optimum. 

To ensure uniform coverage of the solution space, we propose a grid-based initialization method. The 

solution space (all possible paths from the start to the target node) is divided into a grid, and artificial 

fish are placed at grid points to ensure even distribution. The mathematical formulation is: 

 

where: 

a) 𝑋𝑖(𝐾) is the k-th component of the i-th artificial fish. 

b) 𝐷𝑀𝑖𝑛(𝑘) and 𝐷𝑀𝑎𝑥(𝑘) are the minimum and maximum values of the k-th component in the solution 

space. 

c) n is the number of artificial fish. 

This method ensures that artificial fish are evenly distributed across the solution space, enhancing the 

diversity of the initial population and reducing the risk of premature convergence. 

3.2.2 Behavioral Improvements 

a) Foraging Behavior 

i. Boundary handling: When an artificial fish moves beyond the solution space (e.g., a path 

contains invalid nodes), we use a reflection mechanism to bring it back within bounds: 

ii.  

This ensures that all paths remain valid (i.e., consist of existing edges in the graph). 

iii. Global search trigger: If foraging fails to find a better solution after a predefined number of 

attempts (TryNumber), a global search is performed to escape local optima: 

 

iv. where "global" is a parameter defining the range of the global search. If the global search 

yields a worse solution than the current state, the artificial fish remains stationary. This 

mechanism helps preserve good solutions while enabling exploration of new areas. 

b)  Swarming and Following Behavior Optimization 

In the basic AFSA, swarming and following behaviors involve random movement towards the center or 

the leader, which may slow down convergence. We introduce a adaptive step size (S) to balance 

exploration and exploitation: 
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where: 

𝐹𝑠𝑡𝑒𝑝 is the food concentration after a random step. 

𝐹𝑋𝑐
 is the food concentration at the center position. 

If the food concentration after a random step is higher than that at the center, a random step is taken to 

explore new areas. Otherwise, the artificial fish moves directly to the center to exploit promising regions. 

This adaptive step size accelerates convergence by reducing unnecessary random movements. 

The bulletin board mechanism remains unchanged: it records the best solution found, and artificial fish 

update it whenever a better solution is discovered. 

3.3 Implementation of the Improved AFSA for the Shortest Path Problem 

3.3.1 Algorithm Idea 

The improved AFSA solves the shortest path problem by treating each path as an artificial fish in a "water 

area," where the food concentration is the reciprocal of the path's total weight (shorter paths have higher 

concentrations). The algorithm initializes a uniformly distributed population of artificial fish, then 

iteratively improves the paths through modified foraging, swarming, and following behaviors, ultimately 

finding the path with the highest food concentration (shortest total weight). 

3.3.2 Algorithm Steps 

a) Parameter initialization: Set the number of artificial fish (FishNumber), crowding factor (δ), 

maximum number of attempts (TryNumber), maximum iterations (Max_gen), step size (step), 

stagnation parameter (tag, i.e., stop if no improvement for tag iterations), and other parameters. 

b) Population initialization: Define the number of nodes (n) as the dimension of artificial fish. The first 

element is the start node, and the remaining elements are randomly generated non-repeating nodes. 

Ensure the target node is included, and set all nodes after the target node to 0. Remove invalid paths 

(those containing non-existent edges) and calculate the initial food concentration for each artificial 

fish. The initial best solution is stored in the bulletin board. 

c) Behavior execution: Each artificial fish performs improved foraging, swarming, or following 

behaviors. After each behavior, update the bulletin board if a better solution is found. 

d) Termination check: If the maximum iterations (Max_gen) are reached or no improvement is 

observed for tag iterations, stop the algorithm. 

4. Algorithm Simulation and Result Analysis 

4.1 Simulation Setup 

To evaluate the performance of the improved AFSA, we conducted simulations on the undirected 

weighted network shown in Figure 2, which consists of 30 nodes with edge weights representing travel 

time in minutes. The goal is to find the shortest path from node 1 to node 30. 

The network is treated as a symmetric directed graph (edge weights are the same in both directions), 

mimicking real urban traffic networks. The simulation was conducted using MATLAB 7.0, and the 

parameters were determined through extensive experiments to ensure optimal performance: 

a) Number of artificial fish (FishNumber) = 25 

b) Crowding factor (δ) = 0.8 

c) Maximum attempts (TryNumber) = 20 

d) Maximum iterations (Max_gen) = 100 

e) Step size (step) = Vision / 4 

f) Stagnation parameter (tag) = 5 

g) Vision = average distance between artificial fish 

4.2 Simulation Results 

The improved AFSA found the shortest path from node 1 to node 30 as: 

1 - 7 - 13 - 19 - 25 - 26 - 27 - 28 - 29 - 30 

The total travel time (sum of weights) is 11 minutes. 
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To verify the superiority of the improved algorithm, we compared it with other algorithms, including 

Dijkstra's algorithm, the ant colony algorithm, and the basic AFSA, under the same accuracy 

requirements. The results are shown in Table 1. 

 

The results indicate that all algorithms found the shortest path with a total weight of 11 minutes, but the 

improved AFSA achieved the fastest convergence (380 ms), outperforming Dijkstra's algorithm (2160 

ms), the ant colony algorithm (760 ms), and the basic AFSA (640 ms). 

4.3 Result Analysis 

a) Accuracy: All algorithms correctly identified the shortest path, confirming the validity of the 

improved AFSA. 

b) Convergence speed: The improved AFSA outperformed other algorithms due to: 

i. Uniform initial distribution ensuring broader exploration. 

ii. Adaptive step size reducing unnecessary movements. 

iii. Global search mechanism escaping local optima. 

c) Robustness: The improved AFSA showed stable performance across multiple runs, with small 

variations in convergence time, indicating strong robustness. 

5. Conclusion 

This paper addresses the shortest path problem in transportation networks by proposing an improved 

Artificial Fish Swarm Algorithm (AFSA). The improvements include grid-based initialization for 

uniform population distribution and adaptive behavioral rules to accelerate convergence. Simulation 

results demonstrate that the improved AFSA outperforms traditional algorithms (Dijkstra's), the basic 

AFSA, and the ant colony algorithm in terms of convergence speed while maintaining accuracy. 

The algorithm's advantages, such as adaptability to search spaces, parallel search capability, and fast 

tracking of changing optima, make it suitable for dynamic transportation networks. Future work will 

focus on extending the algorithm to time-dependent networks and integrating real-time traffic data for 

more practical applications. 
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